

Introduction

- Increased climate variability and concern for Great Lakes Basin water quality may require improved corn (Zea mays L.) nitrogen (N) management strategies that simultaneously deliver N to the crop and reduce the risk for N loss.
- Michigan corn growers often apply some N at planting to increase early season growth. Methods may include spring pre-plant incorporated (PPI) N and starter fertilizers applied in-furrow or sub-surface banded 5 cm beside and 5 cm below the seed furrow (5x5).
- Corn N uptake increases at V6 V8 suggesting opportunities may exist to increase synchrony of N availability with corn uptake by delaying N applications.
- Relative to the upper Midwest, Michigan's growing season is compressed and growers often utilize shorter-season relative maturity hybrids.
- Further investigations are needed to identify corn growth and yield response to current MI grower strategies using delayed N applications.

Objective

Evaluate corn growth and grain yield response to three N strategies representative of Michigan corn grower practices that involve multiple N-placements and timings applied at a single N rate.

Materials and Methods

- Two field sites (Lansing and Richville, MI).
- Conv. tillage following soybean.
- RCBD with four replications, plot size = 4.5 m x 12.1 m.
- 10 treatments: 9 N-management treatments + untreated control.
- Treatment combinations of N placement and timing. • Treatments grouped into three strategies: PPI N (1-d prior to planting), in-furrow starter (8 kg N ha⁻¹), or 5x5 starter (45 kg N ha⁻¹).
- ○PPI's: urea (100%), PCU and urea blend (75/25), poultry manure (PM) (4-3-2; 2.2 Mg ha⁻¹).
- Sidedress (SD) N timings: early (V4) or late (V11) and 50/50 split V4/V11.
- •One pass systems: urea and PCU/urea only.
- \circ Two pass systems: starter or PM + full SD.
- Treatments equalized to site-specific maximum return to nitrogen rate (MRTN): Richville=202 kg N ha⁻¹; Lansing=157 kg N ha⁻¹.
- Corn seeded: 28 Apr. to 19 May, V4 SD: 28 May to 09 Jun., V11 SD: 25 Jun to 07 Jul.
- Corn (98-d) was seeded in 76-cm rows at 84,016 seeds ha⁻¹.
- Data measurables included: corn V6 NDVI, R1 rel. chlorophyll content (SPAD) (normalized to non-limiting N plot), grain yield.

Table 1. April – June rainfall percent (%) departure from 30-yr mea (1981 – 2010) for Lansing and Richville, MI 2014 – 2016.							
Year	April	May	June				
Lansing	Percent (%) departure from 30-yr mean						
2014	-70	-2	+39				
2015	-69	+29	+116				
2016	+2	-38	-80				
<u>Richville</u>							
2014	+25	-7	-22				
2015	-38	-13	-24				
2016	-59	-52	-57				

Early vs. Late Nitrogen Strategies for Michigan Corn Production

Jeff Rutan*, and K. Steinke, Dept. of Plant, Soil, and Microbial Sciences Michigan State University, Dept. of Plant, Soil, and Microbial Sciences, 1066 Bogue St., East Lansing, MI 48824

Treatment	2014		2015		2016	
In-furrow N + V4 SD	14.5	ab†	12.2	bc	12.2	a
In-furrow N + V11 SD	13.4	d	12.7	bc	11.8	a
In-furrow N + split SD	14.4	abc	13.2	ab	12.0	a
Urea PPI 100%	13.6	cd	11.9	С	11.8	a
PCU/urea PPI (75/25)	13.3	d	12.0	C	12.4	a
PM PPI + V11 SD	14.7	a	13.9	a	12.1	a
5x5 N + V4 SD	13.9	bcd	12.8	bc	13.1	a
5x5 N + V11 SD	13.4	d	13.1	ab	12.4	a
5x5 N + split SD	14.2	abc	12.7	bc	12.7	a
P > F	0.0102		0.0464		0.3490	
	Mult	iple <i>df</i> co	ntrasts			
One pass system	13.5	b	11.9	b	12.1	a
Two pass system	14.0	a	12.9	a	12.3	a
P > F	0.0829		0.0125		0.5385	

[†]Values with the same lower case letter are not significantly different (α =0.1). Yield of untreated plots: 7.2, 5.9, and 8.5 Mg ha⁻¹ in 2014, 2015, and 2016, respectively.

Table 3. Richville, MI: N 2015, and 2016.	placement a	nd timing	g effects on o	corn grai	n yield in 20	14,			
Treatment	2014		2015		2016				
In-furrow N + V4 SD	14.0	bc†	12.7	a	13.8	a			
In-furrow N + V11 SD	13.6	С	11.4	a	12.4	b			
In-furrow N + split SD	14.5	ab	12.4	a	12.9	ab			
Urea PPI 100%	15.0	a	11.2	a	11.2	C			
PCU/urea PPI (75/25)	14.7	ab	11.5	a	11.1	C			
PM PPI + V11 SD	14.5	ab	12.0	a	13.3	ab			
5x5 N + V4 SD	14.4	abc	11.9	a	13.0	ab			
5x5 N + V11 SD	13.7	С	12.6	a	12.8	b			
5x5 N + split SD	14.6	ab	12.3	a	13.3	ab			
P > F	0.0490		0.1328		0.0001				
Multiple <i>df</i> contrasts									
One pass system	14.9	a	11.3	b	11.2	b			
Two pass system	14.0	b	12.1	a	13.0	a			
P > F	0.0017		0.0222		<.0001				

[†]Values with the same lower case letter are not significantly different (α =0.1). Yield of untreated plots: 6.0, 7.2, and 5.8 Mg ha⁻¹ in 2014, 2015, and 2016, respectively.

Figure 1. Relationship of V6 normalized difference vegetation index (NDVI) and grain yield observed across three years (2014 - 2016) of treatments in Lansing (green) and Richville (black), MI. n=105.

0.70

Figure 3. R1 relative SPAD indices as affected by N placement and timing combinations ($P \le 0.0001$) combined across sites and years.

Results and Discussion

Lansing and Richville, MI

- Lansing: 2014 cumulative May Jun. rainfall was near normal; 2015 was 145% above normal; 2016 was 118% below normal (Table 1). Rainfall in 2015 and 2016 resulted in contrasting wet and dry soils, respectively.
- <u>Richville</u>: 2014 cumulative Apr. Jun. rainfall was near normal; 75 168% below normal in 2015 - 2016, respectively (Table 1). Below normal rainfall in 2015 and 2016 resulted in dry soil conditions.
- Except for PM in a wet year (i.e. Lansing, 2015), no yield gains were observed when full SD was delayed from V4 to V11 (Tables 2 and 3). When rainfall was at or below normal the in-furrow strategy + V11 SD reduced grain yield up to 1.4 Mg ha⁻¹ but the 5x5 strategy provided consistency among SD timings. Two pass systems improved yield up to 1.8 Mg ha⁻¹ in wet and dry soils.
- Corn yield potential is realized early, and the ability of N strategies to meet early corn N demands may influence the success of SD N application timings in Michigan (Fig. 1).
- Reduced N rates required by the in-furrow starter placement increased N stress when full SD was delayed (V11) (Fig. 2). Full V11 SD reduced R1 rel. chlorophyll content compared to V4 SD and suggest a reduced capacity for photosynthesis and yield maintenance.
- No yield gains to V11 N application suggests use of late SD N as a rescue application but not as a standard management practice.